8 research outputs found

    Macro Scale Independently Homogenized Subcells for Modeling Braided Composites

    Get PDF
    An analytical method has been developed to analyze the impact response of triaxially braided carbon fiber composites, including the penetration velocity and impact damage patterns. In the analytical model, the triaxial braid architecture is simulated by using four parallel shell elements, each of which is modeled as a laminated composite. Currently, each shell element is considered to be a smeared homogeneous material. The commercial transient dynamic finite element code LS-DYNA is used to conduct the simulations, and a continuum damage mechanics model internal to LS-DYNA is used as the material constitutive model. To determine the stiffness and strength properties required for the constitutive model, a top-down approach for determining the strength properties is merged with a bottom-up approach for determining the stiffness properties. The top-down portion uses global strengths obtained from macro-scale coupon level testing to characterize the material strengths for each subcell. The bottom-up portion uses micro-scale fiber and matrix stiffness properties to characterize the material stiffness for each subcell. Simulations of quasi-static coupon level tests for several representative composites are conducted along with impact simulations

    Modification of a Macromechanical Finite-Element Based Model for Impact Analysis of Triaxially-Braided Composites

    Get PDF
    A macro level finite element-based model has been developed to simulate the mechanical and impact response of triaxially-braided polymer matrix composites. In the analytical model, the triaxial braid architecture is simulated by using four parallel shell elements, each of which is modeled as a laminated composite. For the current analytical approach, each shell element is considered to be a smeared homogeneous material. The commercial transient dynamic finite element code LS-DYNA is used to conduct the simulations, and a continuum damage mechanics model internal to LS-DYNA is used as the material constitutive model. The constitutive model requires stiffness and strength properties of an equivalent unidirectional composite. Simplified micromechanics methods are used to determine the equivalent stiffness properties, and results from coupon level tests on the braided composite are utilized to back out the required strength properties. Simulations of quasi-static coupon tests of several representative braided composites are conducted to demonstrate the correlation of the model. Impact simulations of a represented braided composites are conducted to demonstrate the capability of the model to predict the penetration velocity and damage patterns obtained experimentally

    Robust numerical analysis of fibrous composites from X-ray computed tomography image data enabling low resolutions

    Get PDF
    X-ray computed tomography scans can provide detailed information about the state of the material after manufacture and in service. X-ray computed tomography aided engineering (XAE) was recently introduced as an automated process to transfer 3D image data to finite element models. The implementation of a structure tensor code for material orientation analysis in combination with a newly developed integration point-wise fibre orientation mapping allows an easy applicable, computationally cheap, fast, and accurate model set-up. The robustness of the proposed approach is demonstrated on a non-crimp fabric glass fibre reinforced composite for a low resolution case with a voxel size of 64 μm corresponding to more than three times the fibre diameter. Even though 99.8% of the original image data is removed, the simulated elastic modulus of the considered non-crimp fabric composite is only underestimated by 4.7% compared to the simulation result based on the original high resolution scan

    Integrated Computational Material Design for PMC Manufacturing with Trapped Rubber

    Get PDF
    As the use of continuous fiber polymer matrix composites expands into new fields, there is a growing need for more sustainable manufacturing processes. An integrated computational material design framework has been developed, which enables the design of tailored manufacturing systems for polymer matrix composite materials as a sustainable alternative to achieving high-quality components in high-rate production. Trapped rubber processing achieves high pressures during polymer matrix composite processing, utilizing the thermally induced volume change of a nearly incompressible material inside a closed cavity mold. In this interdisciplinary study, the structural analysis, material science and manufacturing engineering perspectives are all combined to determine the mold mechanics, and the manufacturing process in a cohesive and iterative design loop. This study performs the coupled thermo-mechanical analysis required to simulate the transients involved in composite manufacturing and the results are compared with a previously developed test method. The internal surface pressure and temperatures are computed, compared with the experimental results, and the resulting design process is simulated. Overall, this approach maintains high-quality consolidation during curing while allowing for the possibility for custom distributions of pressures and temperatures. This can lead to more sustainable manufacturing by reducing energy consumption and improving throughput

    Automated X-ray computer tomography segmentation method for finite element analysis of non-crimp fabric reinforced composites

    Get PDF
    In this study a complete procedure is presented of how to generate finite element models based on X-ray computer tomography data on the fibre bundle scale for non-crimp fabric reinforced composites. Non-crimp fabric reinforced composites are nowadays extensively used in the load carrying parts of wind turbine blades. Finite element analysis based on X-ray computer tomographic data will allow faster and cheaper developments of key material parameters. However, automated procedures for computer tomography data transfer into finite elements models are lacking. In the current study, an X-ray computer tomography aided engineering (XAE) process including a fully automated segmentation method and an element-wise material orientation mapping of X-Ray computer tomographic data is presented for the first time. The proposed methodology combines recent research progress and improvements in image analysis, and provides a fast, accurate and repeatable data transfer and analysis process with a high degree of automation

    Dataset of non-crimp fabric reinforced composites for an X-ray computer tomography aided engineering process

    Get PDF
    This data in brief article describes a dataset used for an X-ray computer tomography aided engineering process consisting of X-ray computer tomography data and finite element models of non-crimp fabric glass fibre reinforced composites. Additional scanning electron microscope images are provided for the validation of the fibre volume fraction. The specimens consist of 4 layers of unidirectional bundles each supported by off-axis backing bundles with an average orientation on \ub180\ub0. The finite element models, which were created solely on the image data, simulate the tensile stiffness of the samples. The data can be used as a benchmark dataset to apply different segmentation algorithms on the X-ray computer tomography data. It can be further used to run the models using different finite element solvers
    corecore